Jonathan Mark Brown,  PhD

Jonathan Mark Brown, PhD

Associate Staff

Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195
Location: NN1-27
Phone: (216) 444-8340
Fax: (216) 444-9404


My research is focused on the interrelationship between the diets we eat, lipid metabolism, and the development of chronic disease. We have three active research programs, and we are always looking for highly motivated young scientists to participate in our multidisciplinary training program.

Research Focus 1) Metaorganismal Endocrinology: Gut Microbe-Derived Hormones in Human Health & Disease.Microbes resident in the human intestine represent a key transmissable factor contributing to a wide variety of human diseases. Here we are studying how gut microbes generate an array of small molecule metabolites that impact host physiology and disease. This line of investigation is studying the role of diet-microbe-host interactions in the context of obesity, diabetes, cardiovascular disease, and cancer.

Research Focus 2) Diet and Gene Interactions Driving the Progression of Alcohol-Associated Liver Disease (AALD) and Non-Alcoholic Fatty Liver Disease (NAFLD). The progression of AALD and NAFLD to advanced fibrosis and end stage liver disease is driven by a combination of diet and genetic factors. In this line of investigation we are studying the interaction between metaorganismal nutrient metabolism (i.e. microbe and host metaboism) and host genetics (i.e. common and rare genetic variants), with the hopes of identifying new therapeutic strategies for those suffering from advanced liver disease.

Research Focus 3) Mechanisms by Which Nutrition & Obesity Drive Gastrointestinal (GI) Cancers. Several common malignancies are associated with poor nutrition and obesity, particularly GI malignancies. In this series of projects, we are beginning to understand how metaorganismal nutrient metabolism impacts obesity and how this can be mechanistically tied to GI malignancies.

In other words ...

A long-term goal of my laboratory is to understand the fundamental pathways that dictate how our bodies make, store, and degrade fats or lipids. Most chronic diseases that we are faced with today like coronary heart disease, obesity, diabetes, cancer, and even infectious disease are driven by underlying alterations in lipid metabolism. Our research is focused on lipid metabolic metabolic alterations driven by our commensal bacteria as well as our own human cells. All of our projects aim to translate basic discoveries into new therapeutic regimens for cardiometabolic disease.

Representative Publications from the Brown Laboratory:

1) Temel, et al. (2010) Biliary sterol secretion is not required for macrophage reverse cholesterol transport. Cell Metab. 12(1): 96-102.

2) Lord, C.C., et al. (2012) CGI-58/ABHD5-derived signaling lipids regulate systemic inflammation and insulin action. Diabetes  61(2): 355-363.

3) Cantley, J.L., et al. (2013) CGI-58 knockdown sequesters diacylglycerols in lipid droplets, preventing DAG-mediated PKCε translocation to the plasma membrane and hepatic insulin resistance. Proc. Natl. Acad. Sci USA  110(5): 1869-1874.

4) Koeth, R.A., et al. (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19(5): 576-585.

5) Thomas, G., et al. (2013) The serine hydrolase ABHD6 is a critical regulator of the metabolic syndrome. Cell Rep. 5(2): 508-520.

6) Warrier, M., et al. (2015) The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep. 10: 1-13.

7) Schreiber, R., et al. (2015) Hypophagia and metabolic adaptations in mice with defective ATGL-mediated lipolysis cause reisstance to HFD-induced obesity. Proc. Natl. Acad. Sci. USA 112(5): 13850-13855.

8) Zhao, S., et al. (2014) alpha/beta hydrolase domain-6 accessible monoacylglycerol controls glucose-stimulated insulin secretion. Cell Metab. 19(6): 993-1007.

9) Zhu, W., et al. (2016) Gut microbial metabolite TMAO enhances platelet hypperreactivity and thrombosis risk. Cell 165: 111-124.

10) Lord, C.C., et al. (2016) Regulation of hepatic triacylglycerol metabolism by CGI-58 does not require ATGL co-activation. Cell Rep. 16, 939-949.

11) Schugar, R., et al. (2017) The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of what adipose tissue. Cell Rep. 19, 2451-2461.

12) Gromovsky, et al. (2017) Δ-5 fatty acid desaturase FADS1 impacts metabolic disease by balancing pro-inflammatory and pro-resolving lipid mediators. Arterioscler. Thromb. Vasc. Biol. 38(1): 218-231.

13) Roberts, A.B., et al. (2018) Development of a gut-microbe targeted non-lethal therapeutic to inhibit thrombosis potential without enhanced bleeding. Nat. Med. 24(9): 1407-1417.

14) Helsley, R.N., et al. (2019) Obesity-linked suppression of membrane-bound O-acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease progression. Elife e49882.

15) Gimple, R.C., et al. (2019) Glioma stem cell specific super enhancer promotes polyunsaturated fatty acid synthesis to support EGFR signaling. Cancer Discov. 9(9): 1248-1267.

*** Search for more Brown laboratory publicaitons:

01/07/2020 |  

Mapping the Connection Between Genetics, Obesity and Liver Disease

Published in eLife, a team led by Cleveland Clinic researchers have identified how a specific gene promotes non-alcoholic fatty liver disease (NAFLD), an increasingly prevalent condition that affects roughly one-third of American adults and is linked to obesity. Understanding the molecular pathways that contribute to the disease is critical in the search for new therapies.

11/07/2019 |  

$12M Grant to Study Gut-Heart Disease Link

In the past decade, researchers have begun to uncover the vastly complex interactions between the gut microbiome and human health. In particular, recent landmark studies from Cleveland Clinic have demonstrated a critical link between microbial pathways and the development of cardio-metabolic diseases. Lerner Research Institute’s Stanley Hazen, MD, PhD, is a pioneer in the study of the microbiome’s role in heart disease and was recently awarded more than $12 million from the National Heart, Lung and Blood Institute (NHLBI) of the National Institutes of Health (NIH) to pursue further studies in that vein.