Susceptibility to allergic lung disease regulated by recall responses of dual-receptor memory T cells*

Mark A. Aronica, MD,a,b Shadi Swaidani, MS,b Yan H. Zhang, PhD,c Daphne Mitchell, BA,d Ana L. Mora, MD,c Susan McCarthy, MS,e Jamye O’Neal, BS,d David Topham, MS, PhD,f James R. Sheller, MD,d and Mark Boothby, MD, PhD*c,e

Cleveland, Ohio, Nashville, Tenn, and Rochester, NY

Background: Microbial infections are associated with the initial susceptibility and flares of asthma. However, immunologic mechanisms whereby infections might alter the asthmatic phenotype are lacking.

Objective: To test the hypothesis that memory T cells specific both for a viral antigen and an allergen could influence the pathogenesis of allergic disease in vivo.

Methods: We developed a system in which 2 distinct T-cell receptors coexist on the T-cell surface, 1 specific for a virus and the other for an inhaled antigen.

Results: We show that a population of dual-receptor T cells, polarized through a virus-specific T-cell receptor to contain T1α or T1β cells, can be reactivated through an unrelated T-cell receptor in recall responses in vivo. Quiescent memory cells derived from a T1α-polarized effector population blocked the development of airway hyperreactivity in a model of allergic lung disease, in association with decreased induction of chemokines and eosinophil recruitment. Conversely, reactivation of quiescent T1β cells after inhalation of antigen or virus infection was sufficient to lead to the development of airway hyperresponsiveness and allergic pulmonary inflammation in mice whose lungs were previously normal.

Conclusion: These data provide evidence that dual-receptor memory T cells can regulate allergic disease susceptibility and suggest that they may play a role in mediating the influence of microbes on asthma pathogenesis. (J Allergy Clin Immunol 2004;114:1441-8.)

Key words: Mucosal antigen, T1α/T1β cells, immunoregulation, allergic lung disease, dual-receptor, mice, airway hyperresponsiveness, airway inflammation, asthma

The prevalence of atopic asthma has markedly increased in the past decade. The rapidity of this increase suggests that environmental factors rather than genetic ones are responsible for this rise in the frequency of the disease.1 On the basis of substantial epidemiologic evidence, it has been postulated that early life exposures to microbes and/or endotoxin may alter susceptibility to the subsequent development of an atopic phenotype.2,3 This hygiene hypothesis suggests that a relatively sterile environment in industrialized, urbanized Western countries has contributed to the recent epidemic of asthma and atopy. However, little is known about specific cellular or molecular mechanisms that could account for an effect of microbial exposures on atopic predisposition or ways in which early life environmental factors could influence later immune responses.

Allergen-induced T1β2 cells play a central role in the pathogenesis of asthma and contribute directly to the development of airway hyperresponsiveness (AHR).4,5 The recrudescence of symptoms on exposure to a previous sensitizing antigen is a hallmark of atopic asthma, suggesting that the recall responses of memory T1β2 cells contribute to flares of allergic airway diseases. However, upper respiratory virus infections are the most common cause of exacerbations in atopic patients with asthma,6,7 even though viral and other T1α1-oriented infectious challenges very early in life may protect against subsequent development of asthma.8,10 The cellular mechanisms that give rise to these influences of microbes on asthma are not known.

Allelic exclusion at the T-cell receptor (TCR) α locus is imperfect, so that T cells can express 2 specificities of functional antigen receptors.11 Thus, a significant percentage (10% to 30%) of mature T cells express 2 TCRα chains and are potentially able to respond to 2 completely unrelated antigens. These observations have suggested that dual-receptor (dualR) T cells may represent special cases in which normal processes of tolerance or immune...
regulation are modified. However, it is unknown whether memory cells derived from dualR T cells in response to stimulation through one TCR can later participate in a recall response to an independent antigen, nor is it clear whether such recall responses could alter disease pathogenesis. We hypothesized that substantial clonal expansion and the commitment of dualR T cells toward TH1 or TH2 cytokine production profiles could occur through a microbe-specific TCR, leading to a biased pool of memory T cells. Recall responses of these cells could later influence the susceptibility to allergic airway disease provoked by an allergen unrelated to the microbe.

METHODS

Animals

DO-11.10 mice (BALB/c) transgenic for a TCR recognizing ovalbumin peptide 323-339 and influenza A hemagglutinin (HNT) mice (BALB/c) transgenic for a TCR recognizing HNT peptide from the influenza A hemagglutinin protein were bred in the Vanderbilt University Medical School or in the Cleveland Clinic Foundation mouse facility. Immunocompetent, nonirradiated BALB/c transfer recipients were females 4 to 8 weeks old from Jackson Laboratory (Bar Harbor, Me). All mice were maintained in specific pathogen-free conditions by using microisolator cages and were used in accordance with applicable regulations after institutional approval.

Differentiated CD4+ effector T-cell populations and adoptive transfers

CD4+ T cells from spleen and lymph nodes of TCR transgenic mice were isolated by negative selection by using anti-CD8 and anti-MHC II microbeads (Miltenyi, Auburn, Calif) and were maintained and polarized under TH1 and TH2 conditions as previously described.

Sensitization and lung analyses

For induction of allergic airways disease after aeroallergen inhalation, 1.25 x 10^6 to 5 x 10^6 activated cells were transferred via retro-orbital plexus, as indicated, followed by 24 days in the absence of antigenic stimulation. A standard sensitization model of allergic airways disease, anesthesia, lung physiology measurements, and bronchoalveolar lavage (BAL) was performed as described.

For infection with influenza virus, mice bearing adoptively transferred T-cell populations were anesthetized with intramuscular ketamine 40 μg/g and xylazine 6 μg/g, and 30 μL PBS containing a nonlethal dose of the H1N1 strain A/PR/8/34 (as a fresh 1/30,000 dilution from a once-thawed stock originally titered as 3 x 10^8 egg infectious doses per microliter) was administered intranasally. Statistical analyses of differences between groups were performed with InStat software (GraphPad, Sorrentino, Calif) by using unpaired, nonparametric, 2-tailed t testing.

A more detailed Methods section can be found in the Journal’s Online Repository at www.mosby.com/jaci.

RESULTS

DualR memory TH1 cells can abrogate AHR when present before a TH2-inducing stimulus

Mice transgenic for the ovalbumin-specific DO-11.10 TCR, identified by using the anticonalotypic antibody KJ1-26, were mated with mice expressing an I-A’-restricted TCR recognizing the influenza hemagglutinin peptide HNT, identified by using the Vβ8.3 TCR chain. This receptor pair was physically compatible at the cell surface, as evidenced by flow-cytometric staining (see Fig E1, A, in the Journal’s Online Repository at www.mosby.com/jaci), and no apparent abnormalities of thymic selection could be detected (data not shown). Experiments in which TH1 cells were first activated by one peptide, and then restimulated with the peptide ligand for each TCR, indicated that the receptors also were functionally compatible and caused no apparent shift in the effector characteristics of the activated population (see Fig E1, B, in the Online Repository at www.mosby.com/jaci). We conclude that populations of these dualR cells polarized toward a TH1 or TH2 profile respond in accordance with the effector status when restimulated through a different TCR.

To test whether a pre-existing population of resting, memory T cells derived from a TH1-polarized population could affect the development of a subsequent TH2 response, TH1 and TH2 populations were prepared from dualR TCR transgenic mice by activation through the virus-specific TCR and then transferred into naive, immunologically normal BALB/c recipients (Fig 1, A). These activated cells were deprived of antigen during a 24-day period in vivo (parking). As in an extensive literature on memory T cells, most (~90%) of the activated effector population died, but some entered a quiescent state, leaving only a small population of memory T cells. Mice were then subjected to a standard sensitization protocol that leads to allergic lung inflammation and AHR. Whereas AHR was readily detected in control sensitized mice (intraperitoneal aerosol [IP-aero]), the presence of dualR memory T cells polarized toward the TH11 program after activation through a virus-specific TCR abrogated the ability to develop AHR in this recall-dependent model (Fig 1, B; dualR–TH11–IP-aero). In contrast, when a population of TH2 cells derived from the dualR mice was allowed to become quiescent in naive recipient mice, robust AHR developed (Fig 1, B; dualR–TH12–IP-aero).

Decreased allergic inflammation and chemokine RNA induction in mice bearing a TH1-derived memory subset

Allergic inflammation as measured by eosinophil recovery in BAL fluid was significantly reduced (Fig 2, A;
Despite the complete abrogation of AHR, there was still a modest recovery of eosinophils from the BAL from the recipients of dualR T_{H1} memory cells (dualR–T_{H1}–IP–aero) compared with control sensitized mice (14.5 ± 5.5 vs 89.9 ± 23.3, respectively). Transfer of virus-specific T_{H2} cells, parking to allow formation of a memory subset, and subsequent sensitization of recipients with intraperitoneal ovalbumin in alum had a dramatic increase in total BAL cells as well as eosinophils (total cells, 261.9 ± 59.2; eosinophils, 193.3 ± 38.6). In addition, HNT single TCR transgenic mice polarized to a T_{H1} or T_{H2} phenotype with viral peptide did not alter inflammation in this model (data not shown). To investigate potential mechanisms leading to a decreased number of inflammatory cells, ribonuclease protection assays were performed on the lungs from mice harvested on day 46 (Fig 2, B). The levels of CCL11 (eotaxin), CCL3 (MIP-1α), and CCL1 (TCA-3) in dualR-T_{H1} mice were similar to those of negative controls that only inhaled antigen but had not previously been sensitized to ovalbumin (aero), whereas substantial induction of these chemokines was observed in
lungs of positive control mice which did not bear dualR TH1 cells before initial allergic sensitization (Fig 2, B; IP-aero). In contrast, induction of the chemokine (CCL2) MCP-1, which may have a role in the development of TH2 effectors, was only modestly reduced by the presence of dualR memory TH1 cells.

Donor-derived population of rested TH1 cells can bias cytokine production profiles of the endogenous CD4 subset

To characterize the repertoire and functional characteristics of lymphocytes recruited after aerosol inhalation, lung tissue and peribronchial lymph nodes were harvested and analyzed by fluorescence-activated cell sorting after intracellular cytokine staining (Fig 3, A and B). Despite the dramatic reduction in AHR and eosinophils in the mice that received dualR TH1 cells, only a small portion of the CD4⁺KJ1-26⁺ TH1 cells were recovered from the peribronchial lymph nodes and lung (Fig 3, A and B, lower panel). The majority of the recovered, cytokine-producing CD4⁺ KJ1-26⁺ TH1 cells were IFN-γ⁺, whereas some (4.0% in peribronchial lymph nodes and 2.6% of lung lymphocytes) were IL-4⁺. Because there were no IL-4–producing donor cells at the time of transfer (see Fig E1, B, in the Online Repository at www.mosby.com/jaci), these donor-derived TH1 cells must have arisen from activated but uncommitted donor cells in the transfer pool, presumably developing at the time of intraperitoneal priming with ovalbumin in alum. T cells from the naive, endogenous (CD4⁺KJ1-26⁺) repertoire were activated, trafficked to the lung, and developed a TH2 cytokine profile despite the presence of donor TH1 cells (Fig 3, A and B, upper panel). However, a decrease in the percentage of TH2 cells and an increase in the ratio of recipient-derived IFN-γ⁺ to IL-4⁺ cells were notable distinguishing characteristics between the dualR-TH1–IP-aero group versus the IP-aero group (see Table E1 in the Online Repository at www.mosby.com/jaci). This finding suggests that the donor TH1 cells had an effect on the subsequent immune response to the intraperitoneal priming immunization. The data from Fig 3 indicate that delivery of antigen (ova) in a potent adjuvant (alum) reactivated quiescent memory T_{H1} cells whose original activation occurred through a virus-specific TCR. A consequence of this reactivation was a reduction in the development and/or recruitment of cells of TH2 phenotype from among the polyclonal endogenous repertoire of recipient T cells.

Allergic susceptibility to ovalbumin inhalation generated by dualR TH1 cells originally activated by a viral antigen

We hypothesized that a population of memory TH1 cells that were polarized after encounter with a viral antigen would exhibit a recall TH2 response if they were then reactivated by inhaled antigen specific for a second, unrelated TCR coexpressed on the same T cells. This might thereby constitute another mechanism by which bispecific memory T cells could influence susceptibility to allergic airway disease. TH1 and TH2 populations were prepared from the TCR double-transgenic mice by activation through the virus-specific TCR after a single cycle of culture under polarizing conditions and transferred into recipient mice. After the cells had been parked 24 days, mice were exposed to serial inhalations of nebulized OVA in parallel with negative controls (no cells transferred; Fig 4, A, upper panel). As a positive control, a standard sensitization protocol was used (Fig 4, A, lower panel). Little AHR developed if the mice did not receive cells or a priming injection of OVA in alum (Fig 4, B, aero). In contrast, mice that received antigen-specific TH1 populations developed a dose-dependent increase in reactivity to bronchoconstrictor. The response observed at 2.5 × 10⁶ cells transferred 24 days previously was similar to that obtained with the conventional regimen or with 5 × 10⁶ cells transferred (Fig 4, B). A statistically significant increase in AHR was observed with as few as 1.25 × 10⁵
cells transferred. In contrast, parking ovalbumin-specific T_{H1} cells did not confer sensitization to inhaled allergen. The transfer of naive cells was unable to confer sensitization to inhaled antigen (data not shown). Further, the dualR memory T_{H2} cells led to recruitment of inflammatory cells to the lung parenchyma and air spaces in a dose-dependent manner, whereas naive cells did not (Fig 4, C, and data not shown). These data show that a population of antigen-specific memory T_{H2} cells that were stimulated initially with a virus-derived peptide can regulate susceptibility to AHR when reactivated through a second, unrelated TCR.

Enhanced AHR of mice on influenza virus infection generated by dualR T_{H2} cells originally activated by ovalbumin

To investigate whether dualR T_{H2} cells could influence the magnitude of airways reactivity during virus infection, T cells were activated by using ova³²³⁻³³⁹, cultured under T_{H2} conditions, introduced into normal BALB/c recipient mice, and rested for 4 weeks (Fig 5, A). Mice that received a T_{H2} population bearing only the DO11.10 TCR (DO11-T_{H2}-flu) and mice that received naive dualR T cells (dualR-naive-flu) exhibited a modest increase in bronchial reactivity after intranasal inoculation with influenza related to flu infection (Fig 5, B). Intranasal inoculation with influenza virus led to a significant enhancement of AHR in mice that had received dualR T_{H2} cells (dualR-TH2-flu) compared with those that received either the DO11-T_{H2} population or the naive dualR T cells (Fig 5, B). To confirm that dualR T cells were present in the lung after infection with the PR8 strain of influenza virus used in these experiments, the number and percentage of cells from lung homogenates with or without flu infection was determined by cell count and fluorescence-activated cell sorting analysis (see Fig E2, A, in the Online Repository at www.mosby.com/jaci). There was an increase in both the percentage and total number of CD4⁺/KJ1-26⁺ cells recovered in mice that received dualR-T_{H2} cells and were

FIG 4. DualR memory T_{H2} cells originally activated by a virus-derived peptide lead to allergic airways disease and hyperreactivity after activation of a recall response by ovalbumin inhalation. A, Schematized experimental protocol. Naive CD4⁺ T cells were purified from double-transgenic mice and cultured under T_{H1} or T_{H2} polarizing conditions with HNT peptide and BALB/c antigen-presenting cells. The indicated populations were transferred into nonirradiated BALB/c recipients, and 24 days after cell transfer, mice were subjected to a series of 8 ovalbumin inhalations. As described in Fig 1, A, a standard sensitization protocol was used as a positive control. B, Each bar represents the mean (± SEM) lung resistance derived by averaging the peak airway response (reproducibly at the dose of 1233 μg methacholine per kilogram body weight). Each mean was derived from 6 to 8 individual mice in 4 separate experiments. C, Cell counts recovered in BAL fluid. Data represent mean (± SEM) values for the numbers of cells recovered from the airspace derived from 6 to 8 individual mice in 4 separate experiments. Macs, Macrophages. * P < .05.
weeks after adoptive transfer of in vitro polarized T_{H2} cells from DO11.10 or dualR mice. Fig E3 (in the Online Repository at www.mosby.com/jaci) reveals that the background of the V_{B8.3} TCR on the endogenous CD4^{+} T-cell population is approximately 10%. Gating on CD4^{+}KJ1-26^{+} cells from mice that received DO11.10 T cells reveals a background V_{B8.3} staining pattern of 3%. In contrast, mice that received dualR T cells show increased expression of V_{B8.3} (95%), suggesting that the vast majority of memory cells were of dual specificity.

DISCUSSION

In considering the pathogenesis of asthma, the role of respiratory infections is pertinent because they precipitate most disease flares.6,7,25-27 Moreover, microbial infections in childhood may influence the susceptibility to later development of atopic asthma.3,4 However, there is a paucity of experimental data directed toward explaining the potential mechanisms of these clinical observations. The current findings provide evidence of one means by which the immunologic repertoire could become biased in terms of allergen-reactive T_{H1} and T_{H2} characteristics before the first overt exposure to a potential allergen. First, the data establish that inhaled antigen can act on a rested, antigen-experienced set of T_{H2} cells that originally were activated by a completely different antigen. This encounter with a new, inhaled antigen could then lead to allergic lung disease, even though the same inhalation did not cause lung disease if the dualR memory T_{H2} population was absent. Such findings suggest a model of another mechanism by which microbial antigens could affect asthma, with a subset of T cells specific for both virus and allergen undergoing repetitive expansion and contributing to the memory-phenotype subset. Further, the results with T cells specific for 2 model antigens provide evidence that this mechanism would be able to influence allergic susceptibility or asthma flares. Thus, virus infection could lead to the development of a memory T_{H2} cell repertoire that could be reactivated by otherwise innocuous antigens and predispose individuals to the development of allergic airway disease as a by-product of immune responses to such antigens. Together, these findings provide insights into the pathophysiologic capabilities of T cells competent to recognize 2 unrelated antigens because of their expression of 2 different antigen receptor specificities.

Many peripheral T cells may express 2 TCRs because of inefficient allelic exclusion of the TCR\alpha chain,11 leading to a large repertoire of bifunctional T cells. Speculation about the role of dual TCR cells has focused on forms of unconventional recognition such as alloreactivity or autoimmunity.12,28,29 However, recent observations have suggested a more beneficial effect by extending the immune repertoire of TCRs specific for foreign antigens.13 The number of T cells specific for any given antigen pair (eg, influenza and ragweed) has not been determined, but it is notable that even in young mice, well more than 10% of T cells are of memory phenotype and
apparently arise from exposure to commensal microbes, which are able to stimulate T cells repetitively over time. Thus, it may be that some atopic individuals, over time, develop a memory Th2 population of sufficient size that they are predisposed to an allergic response and AHR once they start to inhale a potential allergen. Alternatively, a memory Th2 population generated by allergen but also recognizing viral epitopes may influence asthma flares as a consequence of upper respiratory infection with virus (Fig 5).

The results presented here indicate that dualR memory Th1 populations, if established before an allergen exposure, can block allergic AHR by diminishing the pool of pulmonary Th1 cells and induction of chemokines (Figs 1 and 2). Additional mechanisms may be relevant to the question of how previous exposures of the immune system to antigens may influence the susceptibility to allergic responses. Recent findings suggest that the newborn immune system may respond in ways that bias recall responses toward Th1 functions and that neonatal mice typically are impaired in the development of Th1 memory effector function. Whether such findings are a basis for asthma in human beings, or for the epidemiologic evidence underlying the hygiene hypothesis, is not yet clear. Further, intercurrent microbial infections might provide a means to bypass the tolerance induction normally imposed by inhalation of soluble protein antigens. Direct study of AHR in a mouse model suggests that if tolerance induction is a mechanism protecting against atopic asthma, virus infection at a precise time before allergen inhalation might lead to interference with the establishment of tolerance. However, the response to inhaled soluble protein when antigen-specific memory T cells are present indicates that the mechanisms, which prevent allergic inflammation and AHR, are bypassed once populations of memory T cells have developed (Fig 4).

In contrast with the role of Th1 cells in promoting allergic pulmonary inflammation, the effect of memory T cells on AHR to bronchoconstrictor includes an ability of a Th1 population to block a sensitization that otherwise would cause allergic inflammation and AHR. Current evidence indicates that there are profound differences between antigen-specific memory T cells (by their nature, resting and remote from antigen exposure) and the activated, cycling population of effector cells specific for the same antigen. However, there has been virtually no direct experimental investigation of the properties of memory CD4 T cells in allergic disease. Evidence of whether Th1 cells protect against or prevent Th2-mediated allergic diseases has been conflicting. In some models, Th1 cells and their IFN-γ production inhibit aspects of the allergic airway response, whereas other data suggest that an activated effector population of Th1 cells can enhance the initial onset of inflammation if aerosol is delivered shortly after transfer. If well-defined Th1 and Th2 effector populations specific for a single antigen were present and had antigen withdrawal together, the recall response of the memory Th2 cells appeared to be impervious to the Th1 population. In comparison with the current findings, these results suggest that the timing for development of the respective populations (Th1, Th2) is a critical determinant of their role in allergic pathophysiology. The clinical correlate of such findings would be children with a genetic predisposition to atopy who were exposed to viral infections or whose initial encounters with certain environmental antigens early in life were biased toward an enlarged Th1 population through concurrent exposures to endotoxin, later manifesting a lower penetrance of consequent asthma. As a natural extension of the dualR hypothesis, it may also be possible for a population of allergen-primed Th2 cells to impede antiviral immunity and promote or augment airways disease.

We thank M. Jenkins and R. Merica for DO-11.10 breeding stock and the KJ1-26 hybridoma, D. Lo for HNT TCR transgenic breeders, R. S. Peebles and S. Joyce for critical comments on the manuscript, M. Nadaf for technical assistance with flow cytometry (Howard Hughes Medical Institute Flow Cytometry Core), and K. Parman (Vanderbilt University Mouse Pathology Core).

REFERENCES

