Aaron Fleischman Ph.D.

Staff Scientist

  • Department of Biomedical Engineering (ND20)
  • Cleveland Clinic Lerner Research Institute
  • 9500 Euclid Avenue
  • Cleveland, Ohio 44195
  • fleisca@ccf.org
  • (216) 445-3218
  • (216) 444-9198

Research interest

Recent progress in microelectromechanical systems,MEMS, is being applied to biomedical applications and has become a new field of research unto itself, known as BioMEMS. BioMEMS is an enabling technology for ever-greater functionality and cost reduction in smaller devices for improved medical diagnostics and therapies based upon the same technology used for computer chips. For example, BioMEMS technology can enhance catheter-based procedures by providing pressure sensing, imaging, drug delivery and tissue sampling, all via tiny biochips occupying <1 mm3 mounted on a catheter. Cell manipulation takes on new meaning as structures can be created on the same size scale as cells. On the nanoscale, BioMEMS can be used to engineer micro-/nanometer-sized features for tissue engineering, protein analyses, assays, and cell interrogation. Areas of application under investigation include miniature high-performance ultrasonic transducers, which integrate electronics and piezoelectric transducers on a single chip to create high-quality ultrasonic images; miniature drug delivery systems, capable of delivering high concentrations of drugs to local areas of tissue while maintaining low systemic concentrations; biochips for cell detection and manipulation; surface textures and systems to enhance tissue engineering of bioartificial tissues and organs; and the design and development of miniature in situ sensors for pressure, temperature strain and flow for minimally invasive and noninvasive surgical procedures and post-surgical follow-up.

In other words ...

My laboratory concentrates on the application of micro and nano technology to biomedical applications. The research focuses in two broad categories of the science of miniaturization. One, we investigate how to shrink high functioning large systems into small computer-like chips for implantation or minimally invasive procedures. Two, we take advantage of the physics unique to very small things to enable new capabilities and technologies for unmet medical needs. All work is focused on improving patient outcomes.

US Patent Patent Title Issue Date First-Named Inventor
7,728,442 Method and Apparatus for In Vivo Sensing 10/23/2007 Aaron Fleischman Ph.D.
7,169,106 Intraocular Pressure Measurement System Including a Sensor Mounted in a Contact Lens 1/30/2007 Aaron Fleischman Ph.D.
6,749,568 Measurement System Including a Sensor Mounted In a Contact Lens 6/15/2004 Aaron Fleischman Ph.D.
6,641,540 Miniature Ultrasound Transducer 11/4/2003 Aaron Fleischman Ph.D.
6,623,984 MEMS-Based Integrated Magnetic Particle Identification System 9/23/2003 Aaron Fleischman Ph.D.
  • Rita M Yaacoub BS
  • Graduate Student
  • Location:ND3-75
  • Phone:(216) 444-1289
  • yaacour@ccf.org

P. Nath, L.R. Moore, M. Zborowski, S. Roy, and A.J. Fleischman, “A novel method to obtain uniform magnetic field energy density gradient distribution using discrete pole pieces for a MEMS (micro-electro-mechanical-systems) based magnetic cell separator”, Journal of Applied Physics, Vol. 99, 2006, p. 08R905

C. Chandrana, N. Kharin, G. D. Vince, S. Roy, and A. J. Fleischman, "Demonstration of second-harmonic IVUS feasibility with focused broadband miniature transducers," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 57, pp. 1077-1085, 2010.

N. Ferrell, R. R. Desai, A. J. Fleischman, S. Roy, H. D. Humes, and W. H. Fissell, "A microfluidic bioreactor with integrated transepithelial electrical resistance (TEER) measurement electrodes for evaluation of renal epithelial cells," Biotechnology and Bioengineering, vol. 107, pp. 707-716, 2010.

C. Chandrana, J. Talman, T. Pan, S. Roy, and A. Fleischman, "Design and Analysis of MEMS Based PVDF Ultrasonic Transducers for Vascular Imaging," Sensors, vol. 10, pp. 8740-8750. 2010