Cleveland Clinic Lerner Research Institute Logo
Cleveland Clinic Lerner Research Institute Logo
  • About
  • Science
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • Ohio
      3D Printing Bioimage AnalysisBioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering
      Flow CytometryGenomic Medicine Institute Biorepository Genomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & Administrative Engagement & Belonging
  • Donate
  • Contact
  • About
  • Science
    • Scientific Programs
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • All Cores
    • Ohio
      3D Printing Bioimage Analysis BioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering >
      Flow CytometryGenomic Medicine Institute BiorepositoryGenomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Research Education & Training Center
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & AdministrativeEngagement & Belonging
  • Donate
  • Contact
  • Search

Research News

❮News A New Target for Outsmarting Obesity

01/03/2019

A New Target for Outsmarting Obesity

Obesity

Understanding how fat cells use energy is an area of great interest to obesity and metabolism researchers. Adipocyte (fat cell) metabolism is a complex process that involves many different proteins with various physiological functions. One such regulatory function being studied is called protein phosphorylation.

Phosphorylation involves a chemical change to a protein; specifically, the addition of a phosphate group to an amino acid. It is an essential biological event that influences how proteins function in the body. Phosphorylation is an extremely common, but complex, phenomenon. Understanding the mechanisms behind it helps us to understand how proteins behave and sometimes contribute to disease, including obesity.

Enzymes called kinases control phosphorylation and facilitate the transfer of phosphates to target proteins. Despite the abundance of kinases, relatively little is known about how they select and bind to these proteins. The process is particularly puzzling to researchers when phosphorylation happens multiple times and at different sites within the same target protein.

A research team led by Paul Fox, PhD, has helped to elucidate how multisite phosphorylation alters fat cell metabolism via a kinase called S6K1. They published new findings in Molecular Cell showing that the presence of insulin around adipocytes changes S6K1's phosphorylation patterns. These chemical changes cause S6K1 to gain affinity for certain proteins. The new target proteins are phosphorylated, altering a complex, multi-step cascade of metabolic events inside the fat cell that influences the synthesis of new fat molecules.

More data is needed to verify the physiological effects of these changes, but this study suggests that manipulating the process could have benefits in reducing insulin-stimulated fat cell metabolism. "Our data suggest that the S6K1 pathway is a novel, attractive target for therapeutic development," Dr. Fox said. "Our next steps are to clarify the finer mechanistic points of the pathway to narrow the focus of future anti-obesity drug discovery." Importantly, the Fox laboratory has shown the same kinases are involved in the aging process, and new drugs could both prevent obesity and increase healthspan.

Dr. Fox is a Staff member of the Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, and holds the Robert Canova Endowed Chair in Inflammation Research.

Abul Arif, PhD, who recently moved from the Fox laboratory to the Emory School of Medicine, was first author of the study. The research was funded by Dr. Fox's NIH grants P01 HL029582, P01 HL076491 and R01GM086430, and by a Scientist Development Grant from the American Heart Association, National Affiliate to Dr. Arif.

Featured Experts
Paul Fox Headshot
Paul
Fox, PhD
News Category
Related News
Defining Sex-Based Differences in Glioblastoma BiologySex Differences Loom Large in Glioblastoma DevelopmentResearchers Investigate Sex Differences in Systemic Lupus Erythematosus

Research areas

Cardiovascular & Metabolic Sciences

Want To Support Ground-Breaking Research at Cleveland Clinic?

Discover how you can help Cleveland Clinic save lives and continue to lead the transformation of healthcare.

Give to Cleveland Clinic

Subscribe to get the latest research news in your inbox.

About Lerner

About Us Careers Contact Us Donate People Directory

Science

Clinical & Translational Research Core Services Departments, Centers & Programs Laboratories Research News

Education & Training

Graduate Programs Molecular Medicine PhD Program Postdoctoral Program RISE Program Undergraduate & High School Programs

Site Information & Policies

Search Site Site Map Privacy Policy Social Media Policy

9500 Euclid Avenue, Cleveland, Ohio 44195 | © 2025 Lerner Research Institute