Alexandru Almasan Ph.D.

Staff

  • Department of Cancer Biology
  • Lerner Research Institute
  • 9500 Euclid Avenue
  • Cleveland, Ohio 44195
  • almasaa@ccf.org
  • Phone: (216) 444-9970
  • Fax: (216) 445-6269

We are interested in the molecular basis of cell death and proliferation control during the genotoxic stress response. Our laboratory has focused on two tumor models: (i) Chronic lymphocytic leukemia (CLL) for leukemia, and (ii) prostate, for epithelial tumors. One project seeks to understand the DNA damage signals incurred by mammalian cells following ionizing radiation (IR). We are interested in IR-regulated genes, with a focus on those that have an important role in cell cycle checkpoints, cell proliferation, apoptosis (Bcl-2 family), and autophagy (ATG family, mTOR). The second project is focused on understanding how the three fundamental cellular responses to IR, cell cycle control, DNA repair, and cell death are integrated. Our recent studies have shown that Cyclin E undergoes a proteolytic, caspase-mediated cleavage during the early stages of apoptosis in hematopoietic cells. The resulting C-terminal fragment of Cyclin E, can no longer sustain cell cycle regulation as it cannot bind to its catalytic partner Cdk2. Instead, it binds to the DNA repair protein Ku70. As a result: (i) in the nucleus it impairs DNA repair by preventing recruitment of accessory proteins (e.g. DNA Ligase IV, XRCC4) to the DNA repair complex assembled on double-stranded DNA, and (ii) in the cytoplasm, it dislocates BAX from Ku70 triggering BAX activation, or when expressed chronically activates autophagy leading to senescence. The third project focuses on a tumor-specific cell death ligand, Apo2L/TRAIL and its role in apoptosis, autophagy and potential for cancer therapy.

In other words ...

One area of focus has been to determine the molecular basis of cell death and proliferation control during the genotoxic stress response, such as encountered during chemotherapy or radiotherapy (RT) in leukemia and prostate cancer. We have been examining the DNA damage signals incurred by mammalian cells following RT. We are interested in IR-regulated genes, with a focus on those that have an important role in apoptosis, autophagy, checkpoints, and cell cycle control. Another area of interest has been the understanding of how the three fundamental cellular responses to RT: cell cycle control, DNA repair, and cell death, are integrated. 

  • Sayer Rashed Al-Harbi Ph.D.
  • Research Fellow
  • Location:NB4-15
  • Phone:(216) 445-7105
  • Fax:(216) 445-6269
  • alharbs@ccf.org
  • Turkeyah Alswillah
  • Graduate Student
  • Location:NB4-15
  • Phone:(216) 445-7105
  • Fax:(216) 445-6269
  • alswilt@ccf.org
  • Payel Chatterjee
  • Graduate Student
  • Location:NB4-15
  • Phone:(216) 445-7105
  • Fax:(216) 445-6269
  • chattep2@ccf.org
  • Gaurav Choudhary
  • Graduate Student
  • Location:NB4-15
  • Phone:(216) 445-7105
  • Fax:(216) 445-6269
  • choudhg@ccf.org

Selected from 74 pubmed publications:

Sharma A, Janocha TA, Hill BT, Smith MR, Erzurum SC, Almasan A. Targeting mTORC1-mediated metabolic addiction to overcome fludarabine resistance in malignant B cells. Molecular Cancer Res, 2014;  12:1205-1215, 2014 (article featured as a Highlight).

Choudhary G, Alharbi S, Almasan A. Caspase-3 activation as a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol, 2014 (in press).

Stancu AM, Smith MR, Almasan A. New agents for the treatment of lymphoid leukemia and lymphoma: focus on recent FDA approvals. Discoveries, 2014, 2: e14.

Singh K, Sharma A, et al. Autophagic flux determines cell death and survival in response to Apo2L/TRAIL (dulanermin). Molecular Cancer, 2014; 13:70.

Bucur O, Almasan A, et al. Discoveries: an innovative platform for publishing cutting edge research discoveries in medicine, biology and chemistry. Discoveries, 2013, 1: e1.  

Chatterjee, P. et al. Defective chromatin recruitment and retention of NHEJ core components in human tumor cells expressing a Cyclin E fragment. Nucleic Acids Res, 2013;  41: 10157-69.

Sharma A, et al.  BECN1 and BIM interactions with MCL-1 determine fludarabine resistance in leukemic B cells. Cell Death & Disease, 2013; L4: e628. 

Chatterjee P, et al. PARP inhibition radiosensitizes most effectively to low dose-rate radiation PTEN-deficient and TMPRSS2-ERG fusion gene-expressing prostate cancer cells. PloS One, 2013; 8: e60408. 

Zhou N, Singh K, et al. The investigational Aurora kinase A inhibitor MLN8237 induces defects in cell viability and cell cycle progression in malignant bladder cancer cells in vitro and in vivo. Clinical Cancer Res, 2013; 19: 1717-28.

Bodo J, Zhao X, Sharma A, et al. The PI3K inhibitor GS-1101 synergistically potentiates HDAC inhibitor-induced proliferation inhibition and apoptosis through the inactivation of PI3K and ERK pathways. Br J Haematol. 2013: 163:72-80.  

Mazumder S, Choudhary GS, et al. Mcl-1 phosphorylation defines ABT-737 resistance that can be overcome by increased NOXA expression in leukemic B-cells. Cancer Res, 2012; 72: 3069-3079.

Singh K, et al. Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress. Autophagy, 2012; 8: 236-51.

Qiu J, et al. Hyperammonemia mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis. Am J Physiol Endocrinol Metab. 2012; 303: E983-E993.

Bucur O, et al. Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications. Cell Death and Disease, 2012; e263.

Klionsky DJ, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012; 8: 445 – 544.

Al-harbi S, et al. An anti-apoptotic Bcl-2 family expression index predicts the response of CLL to ABT-737. Blood, 2011; 118: 3579-90.

Bodo J, et al. HDAC inhibitors potentiate the apoptotic effect of enzastaurin in lymphoma cells, Apoptosis, 2011, 16:914-23.