Cleveland Clinic Lerner Research Institute Logo
Cleveland Clinic Lerner Research Institute Logo
  • About
  • Science
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • Ohio
      3D Printing Bioimage AnalysisBioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering
      Flow CytometryGenomic Medicine Institute Biorepository Genomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & Administrative Engagement & Belonging
  • Donate
  • Contact
  • About
  • Science
    • Scientific Programs
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • All Cores
    • Ohio
      3D Printing Bioimage Analysis BioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering >
      Flow CytometryGenomic Medicine Institute BiorepositoryGenomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Research Education & Training Center
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & AdministrativeEngagement & Belonging
  • Donate
  • Contact
  • Search

Research News

❮News Researchers Identify Protector of Intestinal Barrier

01/18/2021

Researchers Identify Protector of Intestinal Barrier

Dr. Ivanov and his team have clarified the essential protective role of Β-actin in regulating the epithelial barrier and intestinal inflammation.

Researchers led by Andrei Ivanov, PhD, in the Department of Inflammation and Immunity, have shown that the protein β-actin is an essential regulator of gut barrier integrity. The study findings, recently published in Frontiers in Cell and Developmental Biology, suggest that β-actin may be a viable target to help treat or prevent chronic inflammatory bowel diseases like ulcerative colitis, although future research will be necessary.

Actins are the most abundant proteins in human cells and are critical for supporting cellular structure and virtually all cellular functions. Epithelial cells, which line the inner intestines, express two actin variants: β-actin and γ-actin. “Our study was the first to investigate the independent function of β-actin, separate from its related variants, in a preclinical disease model,” said Dr. Ivanov.

Previously, Dr. Ivanov and his team showed that actin proteins help to ensure intestinal barrier integrity by maintaining tight cell-to-cell connectivity. It was unknown, however, whether β-actin and γ-actin have unique or redundant functions in promoting this cell connectivity.

Exploring the distinctive roles of β-actin and γ-actin

To answer this question, the researchers genetically engineered a preclinical model in which β-actin expression was selectively silenced in intestinal epithelial cells. They found that subjects without β-actin exhibited significantly increased intestinal permeability, which is commonly referred to as “leaky gut” and can allow bacteria and toxins to pass from the intestines into the bloodstream.

“Increased intestinal permeability is associated with a number of inflammation-related diseases, including inflammatory bowel diseases and is thought to increase disease severity,” said Dr. Ivanov. “However, it remained poorly understood if the increase in intestinal permeability plays a causal role in either triggering or worsening intestinal inflammation. Our β-actin knockout model with leaky gut provides a unique opportunity to investigate the effects of specific gut barrier disruption on intestinal inflammation in preclinical models.”

They found that in a model of ulcerative colitis, β-actin knock out was associated with significantly worse disease-related symptoms compared to those that normally expressed β-actin.

“We also saw that β-actin knock out was associated with more pronounced inflammatory signaling and tissue injury responses,” Dr. Ivanov added. Expression analyses revealed that the β-actin deficient subjects with exaggerated colitis exhibited increased inflammation—including higher levels of inflammatory cytokines in the colonic tissue and increased immune cell infiltration into the gut—and accelerated cell death.     

New frontiers in epithelial barrier research

Taken together, these findings suggest that β-actin plays an important role in protecting the epithelial lining from injury and inflammation, and functions independently from closely related γ-actin. It also illustrates that selective perturbation of gut barrier integrity is sufficient to exaggerate gut injury and inflammation.

Dr. Ivanov says that to his knowledge, theirs is the first study to show that β-actin actually increases epithelial cell survival during inflammation, and that he looks forward to investigating the specific mechanisms that confer this protection.

While additional research will be critical, these findings present the possibility that targeting β-actin to amplify its expression may help treat or prevent gut inflammation that can lead to chronic inflammatory bowel diseases.

Susana Lechuga, PhD, a postdoctoral fellow in Dr. Ivanov’s lab, was first author on the study, which was supported by the National Institutes of Health.

 

Featured Experts
Andrei Ivanov Headshot
Andrei
Ivanov, PhD
News Category
news
Related News
Processing flavonoids, nutritional components of “superfoods,” requires specific gut bacteriaConnecting the Dots Between Diet, the Gut Microbiome and CancerDr. Andrei Ivanov Receives $2.5 Million to Study Invading Pathogenic Bacteria

Research areas

Inflammation & Immunity

Want To Support Ground-Breaking Research at Cleveland Clinic?

Discover how you can help Cleveland Clinic save lives and continue to lead the transformation of healthcare.

Give to Cleveland Clinic

Subscribe to get the latest research news in your inbox.

About Lerner

About Us Careers Contact Us Donate People Directory

Science

Clinical & Translational Research Core Services Departments, Centers & Programs Laboratories Research News

Education & Training

Graduate Programs Molecular Medicine PhD Program Postdoctoral Program RISE Program Undergraduate & High School Programs

Site Information & Policies

Search Site Site Map Privacy Policy Social Media Policy

9500 Euclid Avenue, Cleveland, Ohio 44195 | © 2025 Lerner Research Institute