Cleveland Clinic Lerner Research Institute Logo
Cleveland Clinic Lerner Research Institute Logo
  • About
  • Science
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • Ohio
      3D Printing Bioimage AnalysisBioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering
      Flow CytometryGenomic Medicine Institute Biorepository Genomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & Administrative Engagement & Belonging
  • Donate
  • Contact
  • About
  • Science
    • Scientific Programs
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • All Cores
    • Ohio
      3D Printing Bioimage Analysis BioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering >
      Flow CytometryGenomic Medicine Institute BiorepositoryGenomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Research Education & Training Center
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & AdministrativeEngagement & Belonging
  • Donate
  • Contact
  • Search

Research News

❮News Combining Genomics and Mathematics Helps Personalize Radiation Therapy for Lung Cancer

12/14/2020

Combining Genomics and Mathematics Helps Personalize Radiation Therapy for Lung Cancer

Rather than a one-size-fits-all approach, new technology from Dr. Scott provide opportunity to choose personalized radiation dose to improve outcomes and reduce toxicity.

Clinical trials in lung cancer over the decades have determined an optimal “one size fits all” dosing scheme for patients treated with radiation therapy, but new research now shows this is not as biologically accurate as once believed. A new technology using tumor genomics to personalize radiation dosing demonstrates that the standard of care approach may be suboptimal for up to 75% of lung cancer patients.

A paper published in the Journal of Thoracic Oncology, co-authored by Dr. Javier F. Torres-Roca, a senior member in the Radiation Oncology Program at Moffitt Cancer Center, and Dr. Jacob G. Scott, a radiation oncologist and physician researcher in the Department of Translational Hematology and Oncology Research at Cleveland Clinic, demonstrates an approach to combine individual tumor genomics and mathematics to personalize the dose of radiation therapy for lung cancer patients. By applying this personalized technology, their study shows an opportunity to increase the efficacy and decrease the toxicity of radiation therapy.

“It’s standard of care to give patients the same radiation dose based on the type of cancer and its stage,” Torres-Roca said. “The idea that this is optimal for every patient is in direct conflict with the fact that all cancers are different. In this study, we demonstrate that the standard dose results in the majority of patients getting either too much or too little radiation. So we developed a new technology that can personalize the dose required for a specific patient’s tumor biology and quantified the clinical opportunity this provides.”

In 2017, Torres-Roca and Scott developed the Genomic Adjusted Radiation Dose (GARD), a method of dosing that accounts for biological differences and can be utilized to predict the optimal radiation therapy dose for each individual patient. The results were published in Lancet Oncology and were used as a basis for this most recent advance.

“Here we extend our work with GARD to define a new paradigm for clinical radiotherapy dose decision-making,” Scott said. “By developing a patient-specific mathematical model that factors in individual tumor biology and healthy tissue complication probabilities, we optimize clinical outcome for each individual patient.”

While the study involved non-small cell lung cancer patients, Torres-Roca and Scott are confident the technology can be used in other cancers, as well.

Moffitt Cancer Center expects to start a clinical trial utilizing the new technology in early 2021.

Adapted from the Cleveland Clinic Newsroom.

Featured Experts
Jacob Scott Headshot
Jacob
Scott, MD, DPhil
News Category
news
Related News
Study Confirms Effectiveness of New Personalized Approach for Radiation TherapyCancer Treatment Approach Developed by LRI Researchers Proven Feasible in Clinical StudyCleveland Clinic Receives $7.9 Million Grant from NIH to Form Radiation Oncology-Biology Integration Network (ROBIN)

Research areas

Translational Hematology & Oncology Research

Want To Support Ground-Breaking Research at Cleveland Clinic?

Discover how you can help Cleveland Clinic save lives and continue to lead the transformation of healthcare.

Give to Cleveland Clinic

Subscribe to get the latest research news in your inbox.

About Lerner

About Us Careers Contact Us Donate People Directory

Science

Clinical & Translational Research Core Services Departments, Centers & Programs Laboratories Research News

Education & Training

Graduate Programs Molecular Medicine PhD Program Postdoctoral Program RISE Program Undergraduate & High School Programs

Site Information & Policies

Search Site Site Map Privacy Policy Social Media Policy

9500 Euclid Avenue, Cleveland, Ohio 44195 | © 2025 Lerner Research Institute