Cleveland Clinic Lerner Research Institute Logo
Cleveland Clinic Lerner Research Institute Logo
  • About
  • Science
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • Ohio
      3D Printing Bioimage AnalysisBioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering
      Flow CytometryGenomic Medicine Institute Biorepository Genomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics SomaScan & Biomarker Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Global Research Education Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & Administrative Engagement
  • Donate
  • Contact
  • About
  • Science
    • Scientific Programs
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • All Cores
    • Ohio
      3D Printing Bioimage Analysis BioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering >
      Flow CytometryGenomic Medicine Institute BiorepositoryGenomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics SomaScan & Biomarker Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Research Education & Training Center
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Global Research Education Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & AdministrativeEngagement
  • Donate
  • Contact
  • Search

Research News

❮News Characterizing Copper’s Role in Colon Cancer Progression

03/02/2020

Characterizing Copper’s Role in Colon Cancer Progression

Researchers led by Dr. Li identified a novel signaling cascade that links inflammation and colorectal cancer, where elevated levels of the pro-inflammatory protein interleukin 17 leads to an accumulation of intracellular copper and ultimately disrupts anti-tumoral defenses.

Copper is a heavy metal that plays an essential role in cellular metabolism and other biological functions. In the presence of inflammation, copper levels increase in tissues and are thought to be beneficial, enhancing the body’s defense against infection. On the other hand, copper is also known to be elevated in cancer cells and has specifically been shown to promote colorectal cancer progression.

Since chronic inflammation is a well-characterized risk factor for cancer, especially colon cancer, Xiaoxia Li, PhD, Department of Inflammation & Immunity, sought to uncover how and why copper becomes elevated in these states to better understand the complex relationship between inflammation and cancer.

Inflammatory molecules mobilize copper transport

Dr. Li began her investigation by focusing on signaling of the pro-inflammatory cytokine interleukin 17 (IL-17), which is expressed during chronic inflammation and is known to promote tumor growth. Expression analyses and live staining of preclinical colon organoids revealed that in the presence of IL-17, expression of a protein called STEAP4 (six transmembrane epithelial antigen of prostate 4) increased.

STEAP4 belongs to a subset of proteins called metallo-reductases, which help copper to traverse the cell membrane. With more STEAP4 readily available, more copper is able to enter the cell and, as a result, intracellular levels of the metal increase. In patient-derived colon cancer organoids, Dr. Li’s team noted that elevated STEAP4 levels—and, therefore, more intracellular copper—was associated with significantly enhanced tumor growth.

Intracellular copper disrupts apoptosis and other helpful defenses against tumor growth

On a more mechanistic level, the researchers showed that this increase in tumor growth may be explained by interactions between copper and a protein called XIAP (X-linked inhibitor of apoptosis) once copper has been transported inside of cancer cells.

They found intracellular copper enhanced in a dose-dependent manner the activity of XIAP, which inhibits apoptosis. With higher levels of intracellular copper and reduced rates of cancer cell death, malignant cells were free to proliferate. Additionally, Dr. Li and her team demonstrated that intracellular copper activates a specific region of the XIAP protein that has enzymatic properties, setting off a cascade of signaling events that dysregulates multiple important cell processes, including gene expression and degradation of a protein that leads to cell death.

This study importantly identifies IL-17/STEAP4/XIAP signaling as a potential connection between inflammation, copper and colorectal cancer progression. Previous research from others in the field has shown that copper chelation (a therapeutic approach that removes heavy metals from the body) has had positive results in patients with late-stage, triple-negative breast cancer. While Dr. Li reports that some of the pro-cancer signaling pathways elucidated in this study were interrupted by chelation, more research is necessary. 

Yun Liao, PhD, postdoctoral fellow, and Junjie Zhao, PhD, research associate, both members of the Li laboratory, were co-first authors on the study, which was published in Nature Communications and supported by the National Cancer Institute and the National Heart, Lung and Blood Institute, parts of the National Institutes of Health. Dr. Li holds the Paul L. Fox, PhD, Endowed Chair in Molecular Medicine.

Image: Immunostaining for STEAP4 expression in human normal colon and tumor colon tissues 

News Category
news
Related News
Dr. Michaela Gack Receives Prestigious NIH Director’s Pioneer AwardImmune protein modification blocks viral replication, heart inflammationDr. Michaela Gack’s lab identifies novel host-based target against multiple mosquito-transmitted viruses

Research areas

Inflammation & Immunity

Want To Support Ground-Breaking Research at Cleveland Clinic?

Discover how you can help Cleveland Clinic save lives and continue to lead the transformation of healthcare.

Give to Cleveland Clinic

Subscribe to get the latest research news in your inbox.

About Lerner

About Us Careers Contact Us Donate People Directory

Science

Clinical & Translational Research Core Services Departments, Centers & Programs Laboratories Research News

Education & Training

Graduate Programs Global Research Education Molecular Medicine PhD Program Postdoctoral Program RISE Program Undergraduate & High School Programs

Site Information & Policies

Privacy Policy Search Site Site Map Social Media Policy

9500 Euclid Avenue, Cleveland, Ohio 44195 | © 2025 Lerner Research Institute