Cleveland Clinic Lerner Research Institute Logo
Cleveland Clinic Lerner Research Institute Logo
  • About
  • Science
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • Ohio
      3D Printing Bioimage AnalysisBioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering
      Flow CytometryGenomic Medicine Institute Biorepository Genomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & Administrative Engagement & Belonging
  • Donate
  • Contact
  • About
  • Science
    • Scientific Programs
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • All Cores
    • Ohio
      3D Printing Bioimage Analysis BioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering >
      Flow CytometryGenomic Medicine Institute BiorepositoryGenomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Research Education & Training Center
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & AdministrativeEngagement & Belonging
  • Donate
  • Contact
  • Search

Research News

❮News New Method of Counting Tumor Cells Offers Possibility of a “Liquid Biopsy”

02/16/2021

New Method of Counting Tumor Cells Offers Possibility of a “Liquid Biopsy”

A new device created by Drs. Fleischman and Zborowski may make it easier to track cancer’s course with a simple blood test.

Metastasis of carcinomas (cancers that come from epithelial cells, which line organ surfaces) depends on cancer cells’ ability to travel from the tumor site and spread throughout the body, where the count of circulating tumor cells (CTCs) in the blood can be an indicator of metastatic risk.

The ability to accurately count the subset of CTCs that are most likely to metastasize could help clinicians better diagnose and treat cancer. Current methods of CTC detection only identify which cells have metastatic potential—a binary yes-or-no characterization.

In a new study published in the Journal of Chromatography A, researchers from the Department of Biomedical Engineering, led by Aaron Fleischman, PhD, and Maciej Zborowski, PhD, report on a new device they’ve developed to identify and perform differential counts of CTCs, which their findings suggest may be more accurate and help to better assess cancer metastasis risk.

Improving the enumeration process

Currently, researchers identify CTCs in the blood using magnetic nanoparticles that specifically bind to molecules called epithelial cell adhesion molecules (EpCAMs). EpCAMs are found only on epithelial cells (but not nucleated, white blood cells), and are a marker for carcinoma. When exposed to the magnetic device, all cells that express any EpCAMs are drawn to the magnet and can be isolated for counting.

Here, the researchers developed a device that is more sensitive and can measure metastatic potential on a gradient of the magnetic field—in that way better reflecting the fact that CTCs are a heterogeneous class of cells and likely contribute to disease in a complex way. Drs. Fleischman’s and Zborowski’s device, called the dipole magnetic fractionator (DMF), uses the same nanoparticle system, but attracts cells based on the amount of EpCAMs they express.

The DMF is a chamber that has three inlets and six outlets and a magnetic field that spans the top. In a simulation of the device, the researchers found that CTCs that are more likely to metastasize (those with the greatest expression of EpCAMs) were drawn upward, closest to the magnet, and those with the least EpCAM expression settled nearer to the bottom of the chamber.

An easier way to monitor cancer progression

This method of assessing metastasis risk—a “liquid biopsy”—would be more convenient for the patient and the clinician.

“Because blood is the main way that CTCs are disseminated, the ability to detect these cells represents a useful and readily available tool,” Dr. Fleischman noted. “CTC detection may give clinicians the opportunity to detect metastatic cancer early in the process, which would enable them to better screen and detect relapse earlier, and could help inform personalized treatment approaches.”

According to Dr. Zborowski, the level of detail and convenience afforded by this device make this approach superior to previous devices.

“We have refined the cell separators by innovative engineering of the gradated magnetic field and matching microfluidics for magnetic, graduated CTC separation, according to the level of their EpCAM marker expression,” he said. “This represents their metastatic potential better than a simple yes-or-no answer possible with the current magnetic cell separation methods.”

Adds Dr. Fleischman, “This device will be beneficial to both clinical oncologists, who will be able to easily gauge metastatic risk, and to research oncologists, who will be able to conduct studies of pure CTC subpopulations that correlate with metastatic disease and drug resistance.”

This study was supported by the National Institutes of Health and the U.S. National Science Foundation.

Featured Experts
Aaron Fleischman Headshot
Aaron
Fleischman, PhD
News Category
news
Related News
Researchers Set Their Sights on “Intelligent” Contact Lens to Manage GlaucomaCleveland Clinic Spinoff Company Reaches Latest New Business Benchmark

Research areas

Biomedical Engineering

Want To Support Ground-Breaking Research at Cleveland Clinic?

Discover how you can help Cleveland Clinic save lives and continue to lead the transformation of healthcare.

Give to Cleveland Clinic

Subscribe to get the latest research news in your inbox.

About Lerner

About Us Careers Contact Us Donate People Directory

Science

Clinical & Translational Research Core Services Departments, Centers & Programs Laboratories Research News

Education & Training

Graduate Programs Molecular Medicine PhD Program Postdoctoral Program RISE Program Undergraduate & High School Programs

Site Information & Policies

Search Site Site Map Privacy Policy Social Media Policy

9500 Euclid Avenue, Cleveland, Ohio 44195 | © 2025 Lerner Research Institute